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Abstract

BACKGROUND Glioblastoma is an aggressive brain tumor in which only 5% of patients reach the 5-

year survival mark. Improvement of immunotherapies for glioblastoma requires a thorough understanding

of the shifting cell dynamics in response to di�erent treatment modalities. This can provide insight into

the mechanism behind therapeutic success and explanations for failed trials. Cell dynamics is well captured

through single-cell RNA sequencing (scRNAseq), a technique in which the genetic transcript of each cell

from a tumor sample is identified. The role of astrocytes in tumor progression is largely unknown but has

shown potential as a therapeutic target. METHODS scRNAseq data from glioma tumor samples on murine

models treated with 9 Gy radiation, TOFU-ACT immunotherapy, and treatment-naïve models was analyzed

using Seurat. Uniform Manifold Approximation and Project (UMAP) plots were constructed. UMAPs were

visually inspected and fold-change increases in cell type counts of interest were investigated. The scRNAseq

analysis pipeline was repeated on astrocytes. RESULTS A decrease in tumor cells validated the success of

the therapies. The 3-fold increase in astrocytes highlights a potential mechanism behind therapeutic success.

Astrocytes could not be further classified into cell subtypes, either due to cell homogeneity or the need for

a more complex reference data set.



Introduction

Glioblastoma (GBM) is an aggressive and lethal brain tumor for which there is no known cure. Only 5% of
patients meet the 5-year survival mark, as identified by Delgado-López (2016). The cell types recruited to
the brain during tumor formation and growth are constantly modulated; furthermore, these cells may even
change in function. Preclinical studies require a thorough understanding of the cell dynamics in the tumor
microenvironment in response to brain malignancies and therapies.

Cell dynamics can be investigated through single-cell RNA sequencing (scRNAseq), which records the ge-
netic transcript of the individual cells in a sample. Samples are taken from the tumor microenvironment,
sequenced, and analyzed. This study validates the scRNAseq analysis of Trivedi et al. and builds upon their
work to investigate the role of astrocytes in tumor growth and response to therapy. Astrocytes are glial cells
whose role in tumor progression is largely unknown. Roemeling (2023) demonstrates that these cells show
promise as a therapeutic target due to its ability to recruit cells to the tumor microenvironment through
chemokine secretion, tuning the tumor landscape to one that either promotes or prevents tumor growth.

Methods & Interpretation

Sample Collection and Sequencing Tumor samples were collected from mice that were either treatment
naïve or had undergone 9 Gy radiation or TOFU-ACT immunotherapy. The samples were sequenced using
Illumina Novaseq 6000 and demultiplexed by Trivedi (2024) using the Cellranger 7.0 pipeline and Seurat 4.0
HTOdemux.

Data was collected by Trivedi (2024) and is available at the NCBI Gene Expression Omnibus with accession
numbers GSE251798, GSE251799, and GSE251800. All original analysis of single-cell data was conducted
in R 4.3.3 using Seurat 5.0.3, which was developed by Hao (2023).

Quality Control and Data Transformation The goal of QC is to preserve only live and representative
cells. Only genes expressed in at least 3 cells were analyzed. High mitochondrial genetic content is indicative
of dying cells, so cells with mitochondrial content values greater than 5% were filtered out. Cells which
express fewer than 250 genes and have fewer than 500 molecules are filtered out in an e�ort to remove poor
reads and empty samples. Remaining cells were downsampled to retain 1000 cells per treatment group.

All functions used to transform data are available in the Seurat package developed by Hao (2023). Expression
per cell is normalized based on the expression of that gene across all detected cells before performing a log
transformation. This was done using NormalizeData(). Next, FindVariableFeatures() was used to find the
most variable genes. Data was then linearly transformed such that gene expression had µ = 0, ‡ = 1 using
ScaleData(). This avoids placing undue importance in downstream analyses on genes that are more highly
expressed. PCA was performed on the variable genes using RunPCA().

The dimensionality of the dataset determines the principal components with which UMAPs are constructed.
Here, we use an elbow plot (Figure 2) to determine dimensionality as suggested by Seurat developers. This
orders principal components by the proportion of total variance it accounts for. 20 principal components was
taken to be the ideal parameter for returning 7-9 clusters, which is consistent with the “elbow” landmark in
the plot.

Clustering and Dimensionality Reduction A K-nearest neighbors graph is constructed based on the
distance between principal components using FindNeighbors() based on the first 20 principal components as
determined in the previous section. Cells are grouped together with FindClusters(), which uses the Louvain
algorithm. The resolution argument was chosen to be 0.4. Typical values for this parameter are greater
than 0.6, but can be lower for smaller datasets like this one (n=3000 after downsampling). Additionally,
this resolution value was chosen to optimize the number of clusters as requested by the lead computational
biologist (7-9 clusters). 13 clusters were found, some of which were combined (see Cluster Annotation) to
produce 7 total clusters.
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A Uniform Manifold Approximation and Projection (UMAP) plot was constructed for each treatment group
using Seurat::DimPlot using the integrated reduction (Figure 3).

Cluster Annotation Cells were annotated (Figure 1) using the reference murine gene set Immgen provided
by SingleR. SingleR uses the Wilcoxon ranked sum test to make pairwise comparisons between cell types.

Figure 1: Annotated UMAP reveals 7 unique cell clusters

Tumor
Endothelial cells

Neurons

Oligodendrocytes
Astrocytes

Immune

Epithelial cells

Tumor

Endothelial cells

Neurons

Oligodendrocytes
Astrocytes

Immune

Epithelial cells

Tumor

Endothelial cells

Neurons

Oligodendrocytes

Astrocytes
Immune

Epithelial cells

9Gy TOFU−ACT Untreated

−15 −10 −5 0 5 10 −15 −10 −5 0 5 10 −15 −10 −5 0 5 10

−10

0

10

UMAP 1

U
M

AP
 2

Tumor

Oligodendrocytes

Endothelial cells

Epithelial cells

Neurons

Astrocytes

Immune

UMAP of CD45−ve cells from murine glioma by cell type

Feature plots were constructed to visualize the expression of luciferase and the PTPRC gene across all
clusters (Figure 4). These features are indicative of tumor cells and immune cells, respectively. CD45 is
a marker of immune cells, so in the context of performing scRNAseq on CD45-ve cells, cells expressing
PTPRC are considered contamination. While the immune population is small enough to allow accurate
interpretation of the UMAP, e�orts should still be taken in the future to improve the biological protocol
such that contamination is minimized.

Visual inspection of the feature plots (Figure 4) reveals clusters 0, 2, 4, and 7 highly express luciferase.
These clusters were manually annotated as tumor cells. Similarly, cluster 10 highly expressed the PTPRC
gene and was called immune cells.

Immune cell (contamination) populations are small and constant throughout all treatment groups, meaning
annotated UMAPS (Figure 1) can be interpreted as is.

Investigate Astrocyte Subtypes A reduction in tumor cell count confirms the success of radiation and
the novel immunotherapy TOFU-ACT. Murine models that underwent each therapy experienced more than
a 3-fold increase in astrocytes, a cell type whose role in modulating the immune system is still an active
area of investigation. Astroyctes have been shown to release immunosuppresive chemokines in some glioma
studies, but have also been shown by Roemeling (2023) to have potential for being infected by virotherapies
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to kickstart anti-tumor action. This demonstrates the need to further classify astrocytes in the context of
glioblastoma.

In an attempt to uncover the role of astrocytes in glioma and their response to immunotherapy, the astrocyte
cluster is further investigated. Cells annotated as astrocytes are subsetted before performing the same
anlaytical workflow that was applied to the entire data set. The elbow plot (Figure 5) reveals the data has
dimensionality of 5.

UMAPs were constructed (Figure 6) and annotated (Figure 7).

Discussion

Astrocytes as a Therapeutic Target Cell clusters in the astrocyte UMAPs (Figure 6) seem relatively
evenly distributed across PCA space for both therapeutic modalities; subtypes of the astrocyte cells are not
di�erentiated. Astrocytes in the untreated murine models have less variance. It is possible that there are too
few detected astrocytes for an accurate investigation. Another possibility is that astrocytes in this tumor
model are homogenous: astrocytes are not di�erentiated into di�erent activation states or phenotypes. The
lack of distinct clustering may also be due to a lack of reference genes provided by the Immgen data set.
Literature review should be conducted to find genes unique to di�erent activation states of astrocytes, and
a new reference gene set should be constructed.

If astrocytes play an immunosuppressive role in this case, it is possible that their multiplication may be a
consequence of the need for immune regulation in response to the therapies’ increase in immune response.
Abberant inflammation in the brain can be fatal, so regulation and immune-suppressive feedback systems
are prevalent in this tumor model.

However, it is also possible that the therapies have some role in shifting the astrocytes’ phenotype towards
one that is inflammatory and rejects tumors. This study highlights the need for further investigation of
astrocytes in response to brain malignancies and therapies.

Relevance of UMAPs to Tumor Studies Constructed UMAPs validate therapeutic e�cacy against
glioma in murine models and visualize the changing non-immune cell subsets. This technique of single-cell
RNA sequencing analysis is very useful as it reduces high-dimensional data to a 2 dimensional plot that can
be easily interpreted. The technique is only gaining more significance and is often thought of as the “gold
standard” for modeling cell dynamics in the cancer field.

Despite its ease of interpretability and simple visualization of high dimensional data, biological conclusions
should not be drawn from these plots alone because it is impossible to preserve all complexities of the data
with a simple model. Furthermore, this represents predicted cell dynamics based on genetic transcripts, all
of which are not translated into functional protein. While genetic transcripts may be indicative of cell type
and function, transcripts are still modified and can be excluded entirely before being translated into protein.
Even proteins are often modified to produce a host of di�erent functions.

Conclusion

The UMAP plots produced by scRNAseq analysis in Trivedi et al. were validated. The high fold-change
increase in astrocyte counts in response to both radiation and immunotherapy highlights its potential as
a therapeutic target. Astrocytes were subsetted and further analyzed using the same scRNAseq analysis
pipeline. Analysis failed to di�erentiate astrocytes intro further cell subtypes, either due to cell homogeneity
or need for a more complex reference data set. Future work should involve building an improved reference
gene data set based on known markers of astrocytes in di�erent activation states and applying the analysis
pipeline to other data sets where a greater number of astrocytes were detected.
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Appendix

Figure 2: Principal components of tumor data ranked by proportion of total variance accounted for reveals
dimensionality = 20
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Figure 3: PCA and clustering reveals 14 unique clusters across treatment groups 9 Gy radiation, TOFU-ACT
immunotherapy, and treatment naïve mice

2

7

9

12

1

0

3

8

4

10

6

11
5

13

2
7

9

12

1

0

3

8

4

10
6

11
5

13

2

7

9

12

1

0

3

8

4

10

6

11
5

13

9Gy TOFU−ACT Untreated

−15 −10 −5 0 5 10 −15 −10 −5 0 5 10 −15 −10 −5 0 5 10

−10

0

10

UMAP 1

U
M

AP
 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

UMAP of CD45−ve cells from murine glioma

5



Figure 4: Feature plots show strength of luciferase expression (row 1) and PTPRC gene expression (row 2).
Gene expression increases as color approaches blue
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Table 1: Cell type distribution (as percentage) across treatment
types

9Gy TOFU-ACT Untreated
Tumor 48.0 21.3 66.2
Oligodendrocytes 13.2 20.7 7.3
Endothelial cells 17.3 21.7 9.4
Epithelial cells 7.8 21.2 3.7
Neurons 6.9 6.7 9.2
Astrocytes 4.3 5.5 1.5
Immune 2.5 2.9 2.7
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Figure 5: Principal components of astrocyte data ranked by proportion of total variance accounted for reveals
dimensionality = 5
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Figure 6: Clustering of astrocyte data reveals 3 unique clusters with large variance
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Figure 7: Annotation of astrocyte data does not uncover astrocyte subtypes
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